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This article is concerned with Gaussian process quadratures,

which are numerical integration methods based on Gaussian pro-

cess regression methods, and sigma-point methods, which are used

in advanced non-linear Kalman filtering and smoothing algorithms.

We show that many sigma-point methods can be interpreted as

Gaussian process quadrature based methods with suitably selected

covariance functions. We show that this interpretation also extends

to more general multivariate Gauss-Hermite integration methods

and related spherical cubature rules. Additionally, we discuss dif-

ferent criteria for selecting the sigma-point locations: exactness of

the integrals of multivariate polynomials up to a given order, mini-

mum average error, and quasi-random point sets. The performance

of the different methods is tested in numerical experiments.

Manuscript received November 10, 2015; released for publication

November 26, 2015.

Refereeing of this contribution was handled by Ondrej Straka.

The first author is grateful to the Academy of Finland for financial

support.

There are no conflict-of-interest or financial disclosure statements to

be made at this time.
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I. INTRODUCTION

Gaussian process quadratures [1]—[6] are methods to

numerically compute integrals of the form

I[g] =
Z
g(x)w(x)dx, (1)

where g :Rn 7!Rm is a non-linear integrand function

and w(x) is a given, typically positive, weight function
such that

R
w(x)dx<1. In Gaussian process quadra-

tures the function g(x) is approximated with a Gaussian

process regressor [7] and the integral is approximated

with that of the Gaussian process regressor.

Sigma-point methods [8]—[16] can be seen [17] as

methods that approximate the above integrals viaZ
g(x)w(x)dx¼

X
i

Wig(xi), (2)

where Wi are some predefined weights and xi are the

sigma-points. Typically the sigma-points and weights

are selected such that when g is a multivariate polyno-

mial up to a certain order, the approximation is exact.

A particularly useful class of methods is obtained

when the weight function is selected to be a multivari-

ate Gaussian density w(x) = N(x jm,P). In the context
of Gaussian process quadratures it then turns out that

the integral of the Gaussian process regressor can be

computed in closed form provided that the covariance

function of the process is chosen to be a squared ex-

ponential [7], [18] (i.e., exponentiated quadratic). This

kind of quadrature methods is also often referred to

as Bayesian or Bayes-Hermite quadratures [2]. They

are closely related to Gauss-Hermite quadratures in the

sense that as Gaussian quadratures can be seen to form

a polynomial approximation to the integrand via point-

evaluations, Gaussian process quadratures use a Gaus-

sian process regression approximation instead [1]—[3].

Because Gaussian process regressors can be used to ap-

proximate a much larger class of functions than poly-

nomial approximations [7], they can be expected to per-

form much better also in numerical integration.

The selection of a Gaussian weight function is also

particularly useful in non-linear filtering and smoothing,

because the equations of non-linear Gaussian (Kalman)

filters and smoothers [17], [19]—[22] consist of Gaus-

sian integrals of the above form and linear operations

on vectors and matrices. The selection of different

weights and sigma-points leads to different brands of

approximate filters and smoothers [17]. For example,

the Gauss-Hermite quadrature and cubature based filters

and smoothers [21]—[25] are based on explicit numeri-

cal integration of the Gaussian integrals. The unscented

transform based methods as well as other sigma-point

methods [8]—[16] can also be retrospectively interpreted

to belong to the class of Gaussian numerical integra-

tion based methods [23]. Conversely, Gaussian type of

quadrature or cubature based methods can also be in-

terpreted to be special cases of sigma-point methods.
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Furthermore, the classical Taylor series based methods

[26] and Stirling’s interpolation based methods [16],

[27] can be seen as ways to approximate the integrand

such that the Gaussian integral becomes tractable (cf.

[17], [28]). The Fourier-Hermite series [29], Hermite

polynomial [30] methods are also based on numerical

approximation of the integrands. For more recent ad-

vances and applications of sigma-point methods in fil-

tering and smoothing, see the articles [31]—[35] and the

references therein.

The aim of this article is to provide a Gaussian

process quadrature viewpoint to sigma-point meth-

ods and multivariate numerical integration methods for

non-linear filtering and smoothing. The generalized

viewpoint also leads to novel non-linear filtering and

smoothing algorithms. We show that many sigma-point

filtering and smoothing algorithms such as unscented

Kalman filters and smoothers, cubature Kalman filters

and smoothers, and Gauss-Hermite Kalman filters and

smoothers can be seen as special cases of Gaussian pro-

cess quadrature based methods with suitably chosen co-

variance functions. More generally, we show that many

classical multivariate Gaussian quadrature methods, in-

cluding Gauss-Hermite rules [36], and symmetric inte-

gration formulas [37] are special cases of the present

methodology. We also discuss different criteria for se-

lecting the sigma-point locations: exactness for multi-

variate polynomials up to a given order, minimum av-

erage error, and quasi-random point sets.

The combination of Gaussian process regressors

with Bayesian filters has also been previously studied

in [38] and [18]. In both of those works the idea is to

use training data to form Gaussian process approxima-

tions to the dynamic and observation models. In [38],

filtering in the resulting Gaussian process state-space

model is done using approximate Bayesian filters such

as unscented Kalman filters and particle filters, whereas

in [18] the non-linear (Kalman) filtering and smoothing

equations are computed via closed form formulas. The

present approach and point of view is different, because

we use Gaussian processes to approximate the integrals

(quadratures) appearing in the filtering and smoothing

equations. In practical point of view this roughly cor-

responds to locally retraining the Gaussian process re-

gressor at every step using specifically designed training

point locations.

The Gaussian process quadrature methodology used

here can be seen to belong to a larger field of proba-

bilistic numerics [39]—[41], where the underlying idea

is to interpret numerical methods as instances of prob-

abilistic inference. For example, numerical integration

amounts to computing an estimate of the integral of a

function given a finite number of function evaluations,

whereas differential equation solvers estimate the ODE

solution given a sequence of derivative evaluations, and

optimization methods use local estimates of the target

function to steer their iterations. Although in this arti-

cle we only use probabilistic numerical integration, it is

clear that probabilistic ODE solvers, optimization meth-

ods, and other probabilistic numerical methods would

be useful in non-linear filtering and smoothing context

as well.

This article is an extended version of the confer-

ence article [6], where we analyzed the use of Gaussian

process quadratures in non-linear filtering and smooth-

ing as well as their connection to the unscented trans-

form and Gauss-Hermite quadratures. In this article, we

deepen and sharpen the analysis of those connections

and extend our analysis to a more general class of spher-

ically symmetric integration rules. We also analyze dif-

ferent sigma-point selection schemes as well as provide

more extensive set of numerical experiments.

II. BACKGROUND

A. Non-Linear Gaussian (Kalman) Filtering and
Smoothing

Non-linear Gaussian (Kalman) filters and smoothers

[17], [21]—[23] are methods that can be used to ap-

proximate the filtering distributions p(xk j y1, : : : ,yk) and
smoothing distributions p(xk j y1, : : : ,yT) of non-linear
state-space models of the form

xk = f(xk¡1)+qk¡1,

yk = h(xk)+ rk, (3)

where, for k = 1,2, : : : ,T, xk 2 Rn are the hidden states,
yk 2Rd are the measurements, and qk¡1 »N(0,Qk¡1)
and rk »N(0,Rk) are the process and measurements
noises, respectively. The non-linear function f(¢) is used
to model the dynamics of the system and h(¢) models
the mapping from the states to the measurements.

Non-linear Gaussian filters (see, e.g., [17], page 98)

are general methods to produce Gaussian approxima-

tions to the filtering distributions:

p(xk j y1, : : : ,yk)¼N(xk jmk,Pk), k = 1,2, : : : ,T: (4)

Non-linear Gaussian smoothers (see, e.g., [17], page

154) are the corresponding methods to produce approx-

imations to the smoothing distributions:

p(xk j y1, : : : ,yT)¼N(xk jms
k,P

s
k), k = 1,2, : : : ,T: (5)

Both Gaussian filters and smoothers can be easily gen-

eralized to state-space models with non-additive noises

(see [17]), but here we only consider the additive noise

case.

B. Gaussian Integration and Sigma-Point Methods

Sigma-point filtering and smoothing methods can

generally be described as methods that approximate the

Gaussian integrals in the Gaussian filtering and smooth-

ing equations (and in the Gaussian moment matching

transform) asZ
g(x)N(x jm,P)dx¼

X
i

Wig(xi), (6)
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where Wi are some predefined weights and xi are the
sigma-points. Typically, the sigma-point methods use

so called stochastic decoupling which refers to the idea

that we do a change of variablesZ
g(x)N(x jm,P)dx=

Z
g(m+

p
P»)| {z }

g̃(»)

N(» j 0,I)d», (7)

where P=
p
P
p
P
T
. This implies that we only need to

design weights Wi and unit sigma-points »i for integrat-
ing against unit Gaussian distributions:Z

g̃(»)N(» j 0,I)d» ¼
X
i

Wig̃(»i), (8)

thus leading to approximations of the formZ
g(x)N(x jm,P)dx¼

X
i

Wig(m+
p
P»i): (9)

Different sigma-point methods correspond to differ-

ent choices of weights Wi and unit sigma-points »i. For
example, the canonical unscented transform [8] uses the

following set of 2n+1 weights (recall that n is the di-

mensionality of the state) and sigma-points:

W0 =
·

n+·
, Wi =

1

2(n+·)
, i= 1, : : : ,2n,

»i =

8><>:
0, i= 0,p

n+·ei, i= 1, : : : ,n,

¡pn+·ei¡n, i= n+1, : : : ,2n:

(10)

where · is a design parameter in the algorithm and

ei 2 Rn is the unit vector towards the direction of the
ith coordinate axis.

Note that sigma-point methods sometimes use dif-

ferent weights for the integrals appearing in the mean

and covariance computations of Gaussian filters and

smoothers. However, here we will only concentrate on

the methods that use the same weights for both in order

to derive more direct connections between the methods.

For example, the above unscented transform weights are

just a special case of more general unscented transforms

(see, e.g., [17]).

C. Gaussian Process Regression

Gaussian process quadrature [2], [3] is based on

forming a Gaussian process (GP) regression [7] approx-

imation to the integrand using pointwise evaluations and

then integrating the approximation. In GP regression [7]

the purpose is to predict the value of an unknown func-

tion

o= g(x) (11)

at a certain test point (o¤,x¤) based on a finite num-
ber of training samples D = f(oj ,xj) : j = 1, : : : ,Ng ob-
served from it. The difference to classical regression is

that instead of postulating a parametric regression func-

tion gμ(x;μ), where μ 2RD are the parameters, in GP

regression we put a Gaussian process prior with a given

covariance function K(x,x0) on the unknown functions
gK(x).

In practice, the observations are often assumed to

contain noise and hence a typical model setting is:

gK »GP(0,K(x,x0)),
oj = gK(xj)+ ²j , ²j »N(0,¾2), (12)

where the first line above means that the random func-

tion gK has a zero mean Gaussian process prior with the

given covariance function K(x,x0). A commonly used

covariance function is the exponentiated quadratic (also

called squared exponential) covariance function

K(x,x0) = s2 exp
μ
¡ 1

2`2
kx¡ x0k2

¶
, (13)

where s,` > 0 are parameters of the covariance function

(see [7]).

The GP regression equations can be derived as fol-

lows. Assume that we want to estimate the value of the

noise-free function g(x) based on its Gaussian process
approximation gK(x) at a test point x given the vector

of observed values o= (o1, : : : ,oN). Due to the Gaussian
process assumption we now getμ

o

gK(x)

¶
»N

μμ
0

0

¶
,

μ
K+¾2I k(x)

kT(x) K(x,x)

¶¶
, (14)

whereK= [K(xi,xj)] is the joint covariance of observed
points, K(x,x) is the (co)variance of the test point, and
k(x) = [K(x,xi)] is the vector of cross covariances with
the test point.

The Bayesian estimate of the unknown value of

gK(x) is now given by its posterior mean, given the

training data. Because everything is Gaussian, the pos-

terior distribution is Gaussian and hence described by

the posterior mean and (auto)covariance functions:

E[gK(x) j o] = kT(x)(K+¾2I)¡1o
Cov[gK(x) j o] =K(x,x0)¡kT(x)(K+¾2I)¡1k(x0):

(15)

These are the Gaussian process regression equations in

their typical form [7], in the special case where g is

scalar. The extension to multiple output dimensions is

conceptually straightforward (see, e.g., [7], [42]), but

construction of the covariance functions as well as the

practical computational methods tends to be compli-

cated [43], [44]. However, a typical easy approach to

the multivariate case is to treat each of the dimensions

independently.

D. Gaussian Process Quadrature

In Gaussian process quadrature [2], [3] the basic

idea is to approximate the integral of a given function

g against a weight function w(x), that is,

I[g] =
Z
g(x)w(x)dx, (16)
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by evaluating the function g at a finite number of points

and then by forming a Gaussian process approximation

gK to the function. The integral is then approximated by

integrating the Gaussian process approximation (or its

posterior mean) which is conditioned on the evaluation

points instead of the function itself. Here we assume

that g is scalar for simplicity as we can always take a

vector function elementwise.

Gaussian process quadratures are related to a re-

gression interpretation of classical Gaussian quadratures

which means that we can interpret many of the classical

methods as orthogonal polynomial approximations of

the integrand evaluated at certain finite number of points

[3]. The integral is then approximated by integrating the

polynomial instead of the original function. However,

the aim of Gaussian process quadrature is to get a good

performance in average, whereas in classical polyno-

mial quadratures the integration rule is designed to be

exact for a limited class of (polynomial) functions. Still,

these approaches are very much linked together [3].

Due to linearity of integration, the posterior mean of

the integral of the Gaussian process regressor is given as

E

·Z
gK(x)w(x)dx j o

¸
=

Z
E[gK(x) j o]w(x)dx, (17)

where the “training set” o= (g(x1), : : : ,g(xN)) now con-

tains the values of the function g evaluated at certain

selected inputs.

The posterior variance of the integral can be evalu-

ated in an analogous manner, and it is sometimes used

to optimize the evaluation points of the function gN [2]—

[5]. The posterior covariance of the approximation is

Var

·Z
gK(x)w(x)dx j o

¸
=

Z Z
Cov[gK(x) j o]w(x)dxw(x0)dx0: (18)

That is, when we approximate the integral (16) with the

posterior mean we haveZ
g(x)w(x)dx¼

·Z
kT(x)w(x)dx

¸
(K+¾2I)¡1o: (19)

The posterior variance of the (scalar) integral is

Var

·Z
gK(x)w(x)dx j o

¸
=

Z Z
K(x,x0)w(x)dxw(x0)dx0

¡
·Z

kT(x)w(x)dx

¸
(K+¾2I)¡1

·Z
k(x0)w(x0)dx0

¸
:

(20)

In this article we are specifically interested in the case

of Gaussian weight function, which then reduces the

integral appearing in the above expressions (19) and

(20) to·Z
kT(x)w(x)dx

¸
i

=

Z
K(x,xi)N(x jm,P)dx: (21)

It is now easy to see that when the covariance function

is a squared exponential K(x,xi) = s
2 exp(¡(2`2)¡1kx¡

xik2), this integral can be computed in closed form by

using the computation rules for Gaussian distributions.

Furthermore if the covariance function is a multivari-

ate polynomial, then these integrals are given by the

moments of the Gaussian distributions, which are also

available in closed form.

III. GAUSSIAN PROCESS QUADRATURES FOR
SIGMA-POINT FILTERING AND SMOOTHING

In this section we start by showing how Gaussian

process quadratures (GPQ) can be seen as sigma-point

methods and then introduce the Gaussian process trans-

form (GPT). The Gaussian process transform then en-

ables us to construct GPQ-based non-linear filters and

smoothers analogously to [17].

A. GPQ as a sigma-point method

In this section the aim is to show how Gaussian

process quadratures (GPQ) can be seen as sigma-point

methods.

LEMMA III.1 (GPQ as a sigma-point method). The

Gaussian process quadrature (or Bayes-Hermite/Bayesian

quadrature) can be seen as a sigma-point-type of integral

approximationZ
g(x)N(x jm,P)dx¼

NX
i=1

Wig(xi), (22)

where xi =m+
p
P»i, with the unit sigma-points »i se-

lected according to a predefined criterion, and the weights

are determined by

Wi =

·μZ
kT(»)N(» j 0,I)d»

¶
(K+¾2I)¡1

¸
i

, (23)

where K= [K(»i,»j)] is the matrix of unit sigma-point
covariances and k(») = [K(»,»i)] is the vector of cross
covariances. In principle, the choice of unit sigma-points

above is completely free, but good choices of them are

discussed in the following sections.

PROOF Let us first use stochastic decoupling (7),

which enables us to only consider unit-Gaussian in-

tegration formulas of the form (8). Because we can

integrate vector functions element-by-element, with-

out loss of generality we can assume that g(x) is

single-dimensional. Let us now model the function

» 7! g(m+
p
P») as a Gaussian process gK with a

given covariance function K(»,»0) and fix the train-
ing set for the GP regressor by selecting the points
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»i, i= 1, : : : ,N, which also determines the correspond-

ing points xi =m+
p
P»i such that the training set is

o= (g(x1), : : : ,g(xN)). The GP approximation to the in-

tegral now follows from (19):Z
g(m+

p
P»)N(» j 0,I)d»

¼
·Z

kT(»)N(» j 0,I)d»
¸
(K+¾2I)¡1o, (24)

which when simplified and applied to all the dimensions

of g gives the result.

Note that above we actually assume that the stocha-

stically-decoupled-function » 7! g(m+
p
P») instead of

the original integrand g(x) has the given covariance

function. The reason for this modeling choice is that

it enables us to decouple the mean and covariance from

the integration formula and hence it is computationally

beneficial. This also makes the result invariant to affine

transformations of the state and it also has a property

that the variability of the functions corresponds to the

scale of the problem. However, on the other hand, one

might argue that it is the function g(x) which we should

actually model and using the stochastically-decoupled-

function is “wrong.”

REMARK III.1 (Variance of GPQ). From Equation (20)

we get that the component-wise variances of the Gaus-

sian process quadrature approximation can be expressed

as

Vj =

Z Z
K(»,»0)N(» j 0,I)d»N(»0 j 0,I)d»0

¡
Z
kT(»)N(» j 0,I)d»(K+¾2I)¡1

£
Z
k(»0)N(»0 j 0,I)d»0: (25)

Using the above integration approximations we can

also define a general Gaussian process transform as

follows. The reason for introducing the transform is that

the corresponding approximate filters and smoothers

can be readily constructed in terms of the transform (cf.

[17]), which we will do in the next section.

ALGORITHM III.1 (Gaussian process transform). The

Gaussian process quadrature based Gaussian approxima-

tion to the joint distribution of x and the transformed

random variable y= g(x)+q, where x»N(m,P) and
q»N(0,Q), is given byμ

x

y

¶
»N

μμ
m

¹GP

¶
,

μ
P CGP

CTGP SGP

¶¶
, (26)

where

xi =m+
p
P»i,

¹GP =
NX
i=1

Wig(xi),

SGP =

NX
i=1

Wi(g(xi)¡¹GP)(g(xi)¡¹GP)T +Q,

CGP =

NX
i=1

Wi(xi¡m)(g(xi)¡¹GP)T: (27)

Above, »i is some fixed set of sigma/training points and

the weights are given by Equation (23) with some selected

covariance function K(»,»0).

In this article, at least in the analytical results, we

usually assume that the measurements are noise-free,

that is, ¾2 = 0. This enables us to obtain analytically ex-

act relationships with the classical quadrature methods.

However, when using Gaussian process quadratures as

numerical integration methods, it is often beneficial to

have at least a small non-zero value for ¾2 in (23).

This kind of “jitter” stabilizes numerics and can even

be sometimes used to compensate for inaccuracies in

modeling.

EXAMPLE III.1 (GPT with squared exponential ker-

nel). Let us now consider » 2R and select the sigma-

point locations to be the ones of unscented transform

(10). With the squared exponential covariance function

(13) and noise-free measurements (¾2 = 0) we then get

the weights:

W =

0BBBBBBBBBBBBBBBB@

e
¡ ·+1

2(`2+1)

³
`e

·+1

2(`2+1) ¡ 2`e 3(·+1)2`2 + `e
·+1

2(`2+1) e
2(·+1)

`2

´
p
`2 +1

³
e
·+1

`2 ¡ 1
´2

¡
`e

(2`2+3)(·+1)

2`2(`2+1)

³
e

·+1

2(`2+1) ¡ e ·+12`2

´
p
`2 +1

³
e
·+1

`2 ¡ 1
´2

¡
`e

(2`2+3)(·+1)

2`2(`2+1)

³
e

·+1

2(`2+1) ¡ e ·+12`2

´
p
`2 +1

³
e
·+1

`2 ¡ 1
´2

1CCCCCCCCCCCCCCCCA
:

(28)

An interesting property is that in the limit `!1 we get

lim
`!1

W =

0BBBBB@

·

·+1

1

2(·+1)

1

2(·+1)

1CCCCCA (29)

which are the unscented transform weights. We return

to this relationship in Section IV-D.
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B. GPQs in filtering and smoothing

In this section we show how to construct filters

and smoothers using the Gaussian process quadrature

approximations. Because Algorithm III.1 can be seen as

a sigma-point method, analogously to other sigma-point

filters considered, for example, in [17], we can now

formulate the following sigma-point filter for the model

(3), which uses the unit sigma-points »i and weights Wi
defined by Algorithm III.1.

ALGORITHM III.2 (Gaussian process quadrature filter).

The filtering is started from initial mean and covariance,

m0 and P0, respectively, such that x0 »N(m0,P0). Then

the following prediction and update steps are applied for

k = 1,2,3, : : : ,T.

Prediction:

1) Form the sigma points as follows: X (i)
k¡1 =mk¡1 +p

Pk¡1»i, i= 1, : : : ,N.
2) Propagate the sigma points through the dynamic

model: X̂ (i)
k = f(X (i)

k¡1), i= 1, : : : ,N.
3) Compute the predicted mean m¡k and the predicted

covariance P¡k :

m¡k =
NX
i=1

WiX̂ (i)
k ,

P¡k =
NX
i=1

Wi(X̂ (i)
k ¡m¡k )(X̂ (i)

k ¡m¡k )T +Qk¡1:

Update:

1) Form the sigma points: X¡(i)k =m¡k +
q
P¡k »i,

i= 1, : : : ,N.

2) Propagate the sigma points through the measurement

model: Ŷ (i)k = h(X¡(i)k ), i= 1 : : :N.

3) Compute the predicted mean ¹k, the predicted covari-
ance of the measurement Sk, and the cross-covariance
of the state and the measurement Ck:

¹k =
NX
i=1

WiŶ (i)k ,

Sk =

NX
i=1

Wi(Ŷ (i)k ¡¹k)(Ŷ (i)k ¡¹k)T +Rk,

Ck =

NX
i=1

Wi(X¡(i)k ¡m¡k )(Ŷ(i)k ¡¹k)T:

4) Compute the filter gain Kk and the filtered state mean
mk and covariance Pk, conditional on the measure-
ment yk:

Kk =CkS
¡1
k ,

mk =m
¡
k +Kk[yk ¡¹k],

Pk = P
¡
k ¡KkSkKTk :

The result of the filter is a sequence of approxima-

tions

p(xk j y1, : : : ,yk)¼N(xk jmk,Pk), k = 1,2, : : : ,T: (30)

Further following the line of thought in [17] we can

formulate a sigma-point smoother using the unit sigma-

points and weights from Algorithm III.1.

ALGORITHM III.3 (Gaussian process quadrature sigma-

point RTS smoother). The smoothing recursion is started

from the filtering result of the last time step k = T,

that is, ms
T =mT, P

s
T = PT and proceeded backwards for

k = T¡ 1,T¡2, : : : ,1 as follows.
1) Form the sigma points: X (i)

k =mk +
p
Pk»i,

i= 1, : : : ,N.

2) Propagate the sigma points through the dynamic

model: X̂ (i)
k+1 = f(X (i)

k ), i= 1, : : : ,N.

3) Compute the predicted mean m¡k+1, the predicted co-
variance P¡k+1, and the cross-covariance Dk+1:

m¡k+1 =
NX
i=1

WiX̂ (i)
k+1,

P¡k+1 =
NX
i=1

Wi(X̂ (i)
k+1¡m¡k+1)(X̂ (i)

k+1¡m¡k+1)T

+Qk,

Dk+1 =

NX
i=1

Wi(X (i)
k ¡mk)(X̂ (i)

k+1¡m¡k+1)T:

4) Compute the gain Gk, mean m
s
k and covariance P

s
k as

follows:

Gk =Dk+1[P
¡
k+1]

¡1,

ms
k =mk +Gk(m

s
k+1¡m¡k+1),

Psk = Pk +Gk(P
s
k+1¡P¡k+1)GTk :

The approximations produced by the smoother are

p(xk j y1, : : : ,yT)¼N(xk jms
k,P

s
k), k = 1,2, : : : ,T: (31)

Note that we could cope with non-additive noises in the

model by using augmented forms of the above filters

and smoothers as in [17]. The fixed-point and fixed-lag

smoothers can also be derived analogously as was done

in the same reference.

IV. SELECTION OF COVARIANCE FUNCTIONS AND
SIGMA-POINT LOCATIONS

The accuracy of the Gaussian process quadrature

method and hence the accuracy of the filtering and

smoothing methods using it is affected by

1) the covariance function K(»,»0) used and
2) the sigma-point locations »i.

36 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 1 JUNE 2016



Once both of the above are fixed, the weights are

determined by Equation (23). In this section we discuss

certain useful choices of covariance functions as well

as “optimal” choices of sigma-point locations for them.

We also discuss the connection of the resulting methods

with sigma-point methods such as unscented transforms

and Gauss-Hermite quadratures.

A. Squared exponential and minimum variance point
sets

In a machine learning context [7] the default choice

for a covariance function of a Gaussian process is

the squared exponential covariance function in Equa-

tion (13). What makes it convenient in Gaussian process

quadratures is that the integral required for computing

the weights in Equation (23) can be evaluated in closed

form (cf. [3], [18]). It turns out that the posterior vari-

ance can be computed in closed form as well which is

useful because for a given set of sigma-points we can

immediately compute the expected error in the integral

approximation (assuming that the integrand is indeed

a GP)–this is possible because the variance does not

depend on the observations at all.

One way to determine the sigma-point locations is

to select them to minimize the posterior variance of the

integral approximation [2], [3]. In our case this corre-

sponds to minization of the variance in Equation (25)

with respect to the points »1:N . Although the minimiza-
tion is not possible in closed form, with a moderate

N this optimization can be done numerically. Unfor-

tunately, this numerical optimization problem is quite

hard, because the optimum is far from being unique

due to numerous symmetries appearing in the problem.

Figure 1 shows examples of minimum variance point

sets optimized by using the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [45].

The squared exponential covariance function is not

the only possible choice for a covariance function.

From the machine learning context we could, for ex-

ample, choose a Matérn covariance function or some

of the scale-mixture-based covariance functions [7]. In

that case the weight integral (23) becomes less trivial,

but at least we always have a chance to precompute

the weights using some (other) multivariate quadrature

method. The sigma-point optimization could also be

done similarly as for the squared exponential covariance

function.

One potential disadvantage of using off-the-shelf co-

variance functions from machine learning is that they

usually do not lead to filtering and smoothing meth-

ods which would give the exact result for linear state-

space models. Recall that unscented Kalman filters

and smoothers as well as Gauss-Hermite filters and

smoothers do give the linear Kalman filter result when

applied to a linear model. One way to diminish this issue

is to use a covariance function which is formed as a sum

of, for example, squared exponential covariance func-

tion and a suitable polynomial covariance function (see

Fig. 1. Minimum variance (2d) point sets for the squared

exponential covariance function. The gray circle is the unit circle

depicted for visualization purposes. (a) 5 points. (b) 10 points.

(c) 15 points. (d) 20 points.

next section). Other ways include an explicit inclusion

of the linear part into the regression model.

B. UT and spherical cubature rules

In addition to the squared exponential covariance

function, another useful class of covariance functions

are polynomial covariance functions. They correspond

to linear-in-parameters regression using polynomials as

the regressor functions. It turns out that also for polyno-

mial covariance functions we can compute the weights

(23) in closed form. What is even more interesting is

that the Gaussian process quadratures reduce to clas-

sical numerical integration methods. In this section we

show that with certain selections of symmetric evalua-

tion points we get a classical family of spherically sym-

metric integration methods of McNamee and Stenger

[37] of which the unscented transform [8], [9] can be

(retrospectively) seen as a special case [12]. More de-

tailed information on the multivariate Hermite polyno-

mials used below can be found in Appendix A.

THEOREM IV.1 (UT covariance function). Assume that

K(»,»0) =
3X
q=0

X
jJ j=q

3X
p=0

X
jIj=p

1

I!J !¸I,JHI(»)HJ (»
0), (32)

where ¸I,J s form a positive definite covariance matrix

and HI(») are multivariate Hermite polynomials (see
Appendix A). If we now select the evaluation points

as in UT (10), then the GPQ weights Wi become the

UT weights. Furthermore, the posterior variance of the

integral approximation is exactly zero.
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PROOF The prior gK »GP(0,K(»,»0)) with the above
covariance is equivalent to a parametric model of the

form

gK(») =
3X
p=0

X
jIj=p

1

I!cIHI(»), (33)

where cI are zero mean Gaussian random variables with
the covariances ¸I,J = E[cIcJ ]. When the joint covari-
ance matrix ¤= [¸I,J ] is non-singular, the posterior co-
variance of the integral being zero is equivalent to that

the integral rule is exact for all functions of the form

(33) with arbitrary coefficients. Note that we treat ¤ as

a covariance matrix despite formally being indexed by

multi-indices. Clearly with the UT evaluations points,

the UT weights are the unique ones that have this prop-

erty (see, e.g., [17]) and hence the result follows.

Note that the above result also covers the cubature

transform (CT), that is, the moment matching rule used

in the cubature Kalman filter (CKF) and the smoother,

because the transform is a special case of UT [17].

THEOREM IV.2 (Higher order UT covariance function).

Assume that

K(»,»0) =
PX
q=0

X
jJj=q

PX
p=0

X
jIj=p

1

I!J !¸I,JHI(»)HJ (»
0): (34)

If we select the evaluation points according to order

P = 5,7,9, : : : rules in [37], we obtain the higher order

integration formulas in [37], which are often referred to

as the fifth order, seventh order, ninth order and higher

order UTs.

PROOF The result follows analogously to the 3rd order

case above.

Figure 2 shows two examples of unscented trans-

form point sets, the 3rd and 5th order point sets (for 2

dimensions).

EXAMPLE IV.1 (Derivation of UT weights from GPQ).

Let » 2 R2 and consider the GPQ with UT (10) sigma-
points and the covariance function (32). With ¾ = 0 and

¸I,J = ±I,J we then obtain the covariance matrix in (35).

K=

0BBBBBBBBBBBBBBB@
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(35)

Fig. 2. Unscented transform point sets. (a) UT-3. (b) UT-5.

It also turns out thatZ
kT(»)N(» j 0,I)d» = (1 ¢ ¢ ¢1) (36)

and finally

W0:4 =

μ
·

·+2

1

2(·+2)

1

2(·+2)

1

2(·+2)

1

2(·+2)

¶T
,

(37)
which are indeed the UT weights.

C. Multivariate Gauss-Hermite point sets

The multivariate Gauss-Hermite point sets (see, e.g.,

[17], [21]) of order P are exact for monomials of the

form x
p1
1 £ ¢¢ ¢£ xpnn , where pi · 2P¡ 1 for i= 1, : : : ,n.

This implies the following covariance function class.

THEOREM IV.3 (Gauss-Hermite covariance function).

Assume that

K(»,»0) =
X

maxJ·2P¡1

X
maxI·2P¡1

1

I!J !¸I,JHI(»)HJ (»
0),

(38)

where ¸I,J s form a positive definite covariance matrix

and HI(») are multivariate Hermite polynomials. If we
now select the evaluation points to form a cartesian prod-

uct of the roots of the Hermite polynomials of order P,

then the GPQ weightsWi become the multivariate Gauss-

Hermite quadrature weights. The posterior variance of

the integral approximation is again exactly zero.
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Fig. 3. Gauss-Hermite point sets. (a) GH-4. (b) GH-5.

PROOF Again the result follows from the equivalence

of the polynomial approximations and polynomial co-

variance functions together with the uniqueness of the

Gauss-Hermite rule for exact integration of this same

function class.

Figure 3 shows 2d sigma-point sets formed as Carte-

sian products of two 4- and 5-point 1d Gauss-Hermite

rules, respectively.

Even when we are using polynomial covariance

functions, we are by no means restricted to using the

specific points sets corresponding to the classical inte-

gration rules. However, given the order of the polyno-

mial kernel and number of sigma-points they are also

minimum variance points sets and hence good choices

also in average–provided that the integrand is indeed a

polynomial. In any case, for an arbitrary set of sigma-

points we can use Equation (23) to give the correspond-

ing minimum variance weights.

D. Connection between squared exponential and
polynomial Gaussian process quadratures

As discussed in [3], the Gaussian process quadra-

ture with squared exponential covariance function also

has a strong connection with classical quadrature

methods. This is because we can consider a set of

damped polynomial basis functions of the form Ái(») =

xi exp(¡x2=(2`2)), which at least informally speaking
can be seen to converge to a polynomial basis when

`!1. We can now construct a family of random func-
tions (Gaussian processes) of the form

g`(x) =
X
j

cjÁk(x) =
X
j

cjx
j exp

μ
¡ x

2

2`2

¶
, (39)

where cj »N(0,(j!l2j)¡1). The covariance function of
this class is

K(x,y) =
X
i

1

i!`2i
xi exp

μ
¡ x

2

2`2

¶
yi exp

μ
¡ y

2

2`2

¶

= exp
³xy
`2

´
exp

μ
¡ x

2

2`2

¶
exp

μ
¡ y

2

2`2

¶
= exp

μ
¡ (x¡ y)

2

2`2

¶
, (40)

Fig. 4. Hammersley point sets. (a) 3 points. (b) 7 points. (c) 10

points. (d) 20 points.

which is the squared exponential covariance function.

Based on the above, Minka [3] argued (although did

not formally prove) that GPQs with squared exponential

covariance functions should converge to the classical

quadratures. This argument is indeed backed up by

our analytical example in Example III.1 where this

covergence indeed happens.

E. Random and quasi-random point sets

Recall that one way to approximate the expecta-

tion of g(») over a Gaussian distribution N(0,I) is to
use Monte Carlo integration. In that method we sim-

ply draw N samples from the Gaussian distribution

»i »N(0,I) and use them as sigma-points. The classical

Monte Carlo approximation to the integral would now

correspond to setting Wi = 1=N. Alternatively, we could

use these random points as sigma-points and evaluate

their weights by Equation (23). This leads to an ap-

proximation, which is sometimes called the Bayesian

Monte Carlo approximation [46], [47].

Instead of sampling from the normal distribution,

we can also use quasi-random points sets such as the

Hammersley point sets [48], [49]. These are points sets

which are designed to give a smaller error in average

than random points. The classical method would cor-

respond to setting all weights to Wi = 1=N, but again,

we can also use Equation (23) to evaluate the weights

for the GP quadrature. This corresponds to a “Bayesian

quasi Monte Carlo” approximation to the integral. Some

examples of Hammersley point sets are shown in Fig-

ure 4.
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Fig. 5. Covariance functions corresponding to different orders of

unscented transforms (UT) and the squared exponential (SE)

covariance function (s= 1, `= 1=2) for a single-input scalar-valued

Gaussian process. (a) UT-3. (b) UT-5. (c) UT-7. (d) SE.

V. NUMERICAL RESULTS

A. Covariance functions and regression implied by
unscented transform

The unscented transform covariance functions of or-

ders 3—7 (see Theorems IV.1 and IV.2) and the expo-

nentiated quadratic (i.e., the squared exponential, SE)

covariance function (Eq. (13)) are illustrated in Fig. 5.

The polynomial nature of the unscented transform (UT)

covariance function can be clearly seen in the figures–

the UT covariance function as such does not have such a

simple local-correlation-interpretation as the SE covari-

ance function has, because the UT covariance functions

simply blow up polynomially when moving away from

the diagonal.

The corresponding Gaussian process regression re-

sults on random data are illustrated in Fig. 6. The poly-

nomial nature of the unscented transform can be clearly

seen in the figures. The Gaussian process prediction

with the unscented transform covariance function has

a clear polynomial shape as expected. Clearly the poly-

nomial fit has less flexibility to explain the data than the

exponentiated quadratic fit although the flexibility cer-

tainly grows with the polynomial (and thus UT) order.

B. Illustrative high-dimensional example

We use the same test case as in Section VIII.A. of

[24], that is, the computation of the first two moments of

the function y(x) = (
p
1+ xTx)p for p= 1,¡2,¡3,¡5.

We thus aim to approximate the following integrals:

E[y(x)] =

Z ³p
1+ xTx

´p
N(x jm,P)dx, (41)

E[y2(x)] =

Z
(1+ xTx)pN(x jm,P)dx: (42)

Fig. 6. Regression with covariance functions for UT and SE.

(a) UT-3. (b) UT-5. (c) UT-7. (d) SE.

Figure 7 shows the result of using the following meth-

ods as function of the state-dimensionality:

² Cubature: The 3rd order spherical cubature sigma-
points (2n points) with the standard integration

weights.

² GPQ-Cubature: The Gaussian process quadrature

with SE covariance function and the 3rd order spher-

ical cubature sigma-points above.

² GPQ-Hammersley: The Gaussian process quadrature
with SE covariance and 2n Hammersley points.

The 3rd spherical cubature points refer to the inte-

gration rule proposed in [37], which was also used in

the cubature Kalman filter (CKF) in [24]. In the rule, the

sigma-points are placed to the intersections of coordi-

nate axes with the origin-centered n-dimensional hyper-

sphere of radius
p
n. Following [24] we measured the

accuracy of the methods by computing accurate mean

¹0 and covariance §0 via Monte Carlo sampling and by
comparing it to the approximate means m1 and covari-

ances §1 using the following KL-divergence for two
Gaussian distributions:

KL[N0kN1] =
1

2

½
tr(§¡11 §0)

+ (¹1¡¹0)T§¡11 (¹1¡¹0)¡ n+log
μ j§1j
j§0j

¶¾
:

(43)

The results in Figure 7 show that the GPQ quite consis-

tently gives a bit lower KL-divergence and hence better

result than the plain cubature when the cubature points

are used. When Hammersley point sets are used, the

results vary a bit more: with small state dimensions the

results are slightly worse than with the cubature points.

When p 6= 1, the Hammersley results are much better
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Fig. 7. Comparison of different methods in computing the moment integrals used in [24] for illustrating the performance of the cubature

rule. It can be seen that the GPQ methods outperform the cubature rule in most of the cases. (a) Cubature for (41). (b) GPQ-Cubature for

(41). (c) GPQ-Hammersley for (41). (d) Cubature for (42). (e) GPQ-Cubature for (42). (f) GPQ-Hammersley for (42).

in high dimensions whereas with p= 1 the results are

worse than with the cubature point sets.

C. Univariate non-linear growth model

In this section we compare the performance of the

different methods in the following univariate non-linear

growth model (UNGM) which is often used for bench-

marking non-linear estimation methods:

xk =
1

2
xk¡1 +25

xk¡1
1+ x2k¡1

+8cos(1:2k)+ qk¡1,

yk =
1

20
x2k + rk, (44)

where x0 »N(0,5), qk¡1 »N(0,10), and rk »N(0,1).
We generated 100 independent datesets with 500

time steps each and applied the following methods

to it: extended, unscented (·= 2), and cubature filters

and smoothers (EKF/UKF/CKF/ERTS/URTS/CRTS);

Gauss-Hermite filters and smoothers with 3, 7, and 10

points (GHKF/GHRTS); Gaussian process quadrature

filter and smoother with unscented transform points

(GPKFU/GPRTSU) and cubature points (GPKFC/

GPRTSC); with Hammersley point sets of sizes 3, 7, and

10 (GPKFH/GPRTSH); and with minimum variance

points sets of sizes 3, 7, and 10 (GPKFO/GPRTSO). The

covariance function was the exponentiated quadratic

with s= 1 and `= 3, and the noise variance was set

to 10¡8. The RMSE results together with single stan-
dard derivation bars are shown in Figures 8 and 9. As

can be seen in the figures, with 7 and 10 points the

Fig. 8. RMSE results of filters in the UNGM experiment.

Gaussian process quadrature based filters and smoothers

have significantly lower errors than almost all the other

methods–only Gauss-Hermite with 10 points and the

unscented RTS smoother come close.

D. Bearings only target tracking

In this section we evaluate the methods in the bear-

ings only target tracking problem with a coordinated-

turn dynamic model, which was also considered in Sec-
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Fig. 9. RMSE results of smoothers in the UNGM experiment.

tion III.A of the article [22]. The non-linear dynamic

model is

xk =

0BBBBBBBBB@

1
sin(!k¢t)

!
0 ¡

μ
1¡ cos(!k¢t)

!

¶
0

0 cos(!k¢t) 0 ¡sin(!k¢t) 0

0
1¡ cos(!k¢t)

!k
1

sin(!¢t)

!
0

0 sin(!k¢t) 0 cos(!k¢t) 0

0 0 0 0 1

1CCCCCCCCCA
£ xk¡1 +qk¡1, (45)

where the state of the target is x= (x1, _x1,x2, _x2,!), and
x1,x2 are the coordinates and _x1, _x2 are the velocities

in two dimensional space. The time step size is set

to ¢t= 1 s and the covariance of the process noise

qk »N(0,Q) is

Q =

0BBBBBBBBBBBB@
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¢t3

3
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2
0 0 0
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2
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3
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2
0

0 0 q1
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2
q1¢t 0
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1CCCCCCCCCCCCA
,

(46)

where we used q1 = 0:1 m
2s¡3 and q2 = 1:75£ 10¡4 s¡3.

In the simulation setup we have four sensors mea-

suring the angles μ between the target and the sensors.

The non-linear measurement model for sensor i can be

written as

μi = arctan

μ
x2¡ si2
x1¡ si1

¶
+ ri, (47)

Fig. 10. Position RMSE results of filters in the bearings only

experiment.

Fig. 11. Position RMSE results of smoothers in the bearings only

experiment.

where (si1,s
i
2) is the position of the sensor i in two

dimensions, and ri »N(0,¾2μ ) is the measurement noise.
The used parameters were the same as in the article [22].

The RMSE results for the position errors are shown

in Figures 10 and 11. Clearly all of the sigma-point

methods outperform the Taylor series based meth-

ods (EKF/EKS). However, the performances of all the

sigma-point methods are very similar: also the Gaussian

process quadrature methods give very similar results to

the other sigma-point methods. There is a small dip in

the errors at the Gauss-Hermite based methods as well

as in the highest order Hammersley GPQ method, but

42 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 1 JUNE 2016



practically the performance of all the sigma-point meth-

ods is the same.

VI. CONCLUSION

In this article we have provided a Gaussian process

quadrature viewpoint to sigma-point methods and mul-

tivariate numerical integration methods for non-linear

filtering and smoothing. Using this viewpoint, we have

also developed new Gaussian process quadrature based

non-linear Kalman filtering and smoothing methods and

analyzed their relationship with other sigma-point fil-

ters and smoothers. We have also discussed the se-

lection of the evaluation points for the quadratures

with respect to different criteria: exactness for mul-

tivariate polynomials up to a given order, minimum

average error, and quasi-random point sets. We have

shown that with suitable selections of (polynomial) co-

variance functions for the Gaussian processes the fil-

ters and smoothers reduce to unscented Kalman fil-

ters of different orders, as well as to Gauss-Hermite

Kalman filters and smoothers. By numerical experi-

ments we have also shown that the Gaussian process

quadrature rules as well as the corresponding filters

and smoothers often outperform previously proposed

(polynomial) integration rules and sigma-point filters

and smoothers.

At this point it is useful to reiterate where the relation

of Gaussian process quadratures (GPQs) and sigma-

point methods actually originates from. First of all,

sigma-point filtering and smoothing methods can be

seen as multivariate (classical) quadrature approxima-

tions to formal Gaussian (Kalman) filtering and smooth-

ing equations. We also know that classical quadratures

can be seen as methods that integrate a polynomial ap-

proximant of the function instead of the function itself.

From probabilistic numerics we know that Gaussian

process (i.e., Bayes-Hermite) quadrature corresponds

to integrating a Gaussian process approximant of the

function. Now the “kernel trick” tells us that polyno-

mial interpolants can be converted into Gaussian pro-

cess regressors by using a suitable polynomial covari-

ance function. This implies that using a suitable poly-

nomial covariance function in GPQ approximation of

Gaussian (Kalman) filtering and smoothing equations

will give us back the conventional sigma-point methods.

The known limit results of GPQs converging to classical

quadratures also directly translate to convergence of the

GPQ based filters and smoothers to the conventional

sigma-point methods.

APPENDIX A FOURIER-HERMITE SERIES

Fourier-Hermite series (see, e.g., [50]) are orthogo-

nal polynomial series in a Hilbert space, where the inner

product is defined via an expectation of the product over

a Gaussian distributions. These series are also inherently

related to non-linear Gaussian filtering as they can be

seen as generalizations of statistical linearization and

they also have a deep connection with unscented trans-

forms, Gaussian quadrature integration, and Gaussian

process regression [17], [29], [30].

We define the inner product of the multivariate scalar

functions f(x) and g(x) as follows:

hf,gi=
Z
f(x)g(x)N(x j 0,I)dx: (48)

If we now define a norm via kfk2H = hf,fi, and the cor-
responding distance function d(f,g) = kf¡ gkH, then
the functions kfkH <1 form a Hilbert space H. It now
turns out that the multivariate Hermite polynomials form

a complete orthogonal basis of the resulting Hilbert

space [50].

A multivariate Hermite polynomial with multi-index

I = fi1, : : : , ing can be defined as
HI(x) =Hi1 (x1)£ ¢¢ ¢£Hin(xn), (49)

which is a product of univariate Hermite polynomials

Hp(x) = (¡1)p exp(x2=2)
dp

dxp
exp(¡x2=2): (50)

The orthogonality property can now be expressed as

hHI ,HJ i=
½I!, if I = J
0, otherwise,

(51)

where we have denoted I! = i1! ¢ ¢ ¢ in! and I = J means

that each of the elements in the multi-indices I =
fi1, : : : , ing and J = fj1, : : : ,jng are equal. We will also
denote the sum of indices as jIj= i1 + ¢ ¢ ¢+ in.
A function g(x) with hg,gi<1 can be expanded

into Fourier-Hermite series [50]

g(x) =

1X
p=0

X
jIj=p

1

I!cIHI(x), (52)

where HI(x) are multivariate Hermite polynomials and
the series coefficients are given by the inner products

cI = hHI ,gi.
Consider a Gaussian process gG(x) that has zero

mean and a covariance function K(x,x0). In the same
way as deterministic functions, Gaussian processes can

also be expanded into Fourier-Hermite series:

gG(x) =

1X
p=0

X
jIj=p

1

I! c̃IHI(x), (53)

where the coefficients are given as c̃I = hHI ,gGi. The
coefficients c̃I are zero mean Gaussian random variables
and their covariance is given as

E[c̃I c̃J ] = E[hHI ,gGihHJ ,gGi]

=

Z Z
HI(x)K(x,x

0)HJ (x
0)

£N(x j 0,I)N(x0 j 0,I)dxdx0: (54)
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If we define constants ¸I,J = E[c̃I c̃J ] then the covari-
ance function K(x,x0) can be further written as series

K(x,x0) =
1X
q=0

X
jJ j=q

1X
p=0

X
jIj=p

1

I!J !¸I,JHI(x)HJ (x
0):

(55)
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